Extended Local Binary Pattern Features for Improving Settlement Type Classification of QuickBird Images
نویسندگان
چکیده
Despite the fact that image texture features extracted from high-resolution remotely sensed images over urban areas have demonstrated their ability to distinguish different classes, they are still far from being ideal. Multiresolution grayscale and rotation invariant texture classification with Local Binary Patterns (LBPs) have proven to be a very powerful texture feature. In this paper we perform a study aiming to improve the performance of the automated classification of settlement type in high resolution imagery over urban areas. That is, we combined the LBP method based on recognising certain patterns, termed “uniform patterns” with the rotational invariant variance measure that characterises the contrast of the local image texture, then combined multiple operators for multiresolution analysis. The results showed that the joint distribution of these orthogonal measures improve performance over urban settlement type classification. This shows that variance measure (contrast) is an important property when classifying settlement types in urban areas.
منابع مشابه
Mandibular Trabecular Bone Analysis Using Local Binary Pattern for Osteoporosis Diagnosis
Background: Osteoporosis is a systemic skeletal disease characterized by low bone mineral density (BMD) and micro-architectural deterioration of bone tissue, leading to bone fragility and increased fracture risk. Since Panoramic image is a feasible and relatively routine imaging technique in dentistry; it could provide an opportunistic chance for screening osteoporosis. In this regard, numerous...
متن کاملImage Difference Histogram: a New Tool for Image Analysis Applied to Classification of Urban Settlements
Automatic classification of urban settlement from satellite images has various applications such as urban development planning and the gathering of environmental statistics. Abeigne Ella et al. [1] showed that Local Binary Patterns (LBP) features extracted from QuickBird images of the Soweto region in South Africa is superior to other feature extraction methods described in [2],[3], [4], [5], [...
متن کاملSecond-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain
Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...
متن کاملA Novel Noise-Robust Texture Classification Method Using Joint Multiscale LBP
In this paper we describe a novel noise-robust texture classification method using joint multiscale local binary pattern. The first step in texture classification is to describe the texture by extracting different features. So far, several methods have been developed for this topic, one of the most popular ones is Local Binary Pattern (LBP) method and its variants such as Completed Local Binary...
متن کاملCompressed Image Hashing using Minimum Magnitude CSLBP
Image hashing allows compression, enhancement or other signal processing operations on digital images which are usually acceptable manipulations. Whereas, cryptographic hash functions are very sensitive to even single bit changes in image. Image hashing is a sum of important quality features in quantized form. In this paper, we proposed a novel image hashing algorithm for authentication which i...
متن کامل